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Abstract: 

 
Unmanned Aerial Vehicles (UAVs) represent a rapidly increasing 

technology with profound implications for various domains, 

including surveillance, security, and commercial applications. 

Among the number of detection and classification methodologies, 

radar technology stands as a cornerstone due to its versatility and 

reliability. This paper presents a comprehensive primer written 

specifically for researchers starting on investigations into UAV 

detection and classification, with a distinct emphasis on the 

integration of full-wave electromagnetic computer-aided design (EM 

CAD) tools. Commencing with an elucidation of radar’s pivotal role 

within the UAV detection paradigm, this primer systematically 

navigates through fundamental Frequency-Modulated Continuous- 

Wave (FMCW) radar principles, elucidating their intricate interplay 

with UAV characteristics and signatures. Methodologies pertaining 

to signal processing, detection, and tracking are examined, with 

particular emphasis placed on the pivotal role of full-wave EM CAD 

tools in system design and optimization. Through an exposition of 

relevant case studies and applications, this paper underscores 

successful implementations of radar-based UAV detection and 

classification systems while elucidating encountered challenges and 

insights obtained. Anticipating future trajectories, the paper 

contemplates emerging trends and potential research directions, 

accentuating the indispensable nature of full-wave EM CAD tools in 

propelling radar techniques forward. In essence, this primer serves as 

an indispensable roadmap, empowering researchers to navigate the 

complex terrain of radar-based UAV detection and classification, 

thereby fostering advancements in aerial surveillance and security 

systems. 
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1. INTRODUCTION 

 
Unmanned Aerial Vehicles (UAVs), commonly known as drones, 

have seen exponential growth in various applications, including 

defense, agriculture, disaster management, and surveillance. In India, 

the UAV market is projected to reach ₹2,500 crores ($300 million) by 

2025, driven by increasing adoption in military and commercial 

sectors. The Directorate General of Civil Aviation (DGCA) has 

introduced policies to regulate UAV operations, emphasizing the need 

for effective monitoring and security. However, the rise in 

unauthorized UAV activities poses significant security threats, 

including border surveillance breaches and potential terrorist misuse. 

Radar-based detection and classification systems are crucial for 

countering these threats, offering reliable, all-weather detection 

capabilities. Frequency-Modulated Continuous-Wave (FMCW) radar, 

in particular, is preferred for its high resolution and adaptability in 

various environments. Traditional methods face challenges in 

accurately classifying UAVs amidst clutter, necessitating advanced 

computational tools. Deep learning integrated with radar technology 

offers a promising solution, enabling precise identification and 

classification of UAVs in real-time. This research focuses on 

leveraging FMCW radar and full-wave EM CAD tools, ensuring a 

robust UAV detection framework while addressing modern security 

and operational challenges. 

Before the advent of machine learning, UAV detection and 

classification relied on traditional signal processing and rule-based 

algorithms, which struggled with complex environments and low 

signal-to-noise ratios. Conventional radar systems often misclassified 

UAVs as birds, insects, or weather disturbances due to limited feature 

extraction capabilities. Additionally, Doppler-based detection 

methods failed in low-speed UAV scenarios, leading to false alarms 

and missed detections. The reliance on handcrafted feature selection 

meant that systems lacked adaptability to new UAV models and 

operational conditions. Furthermore, hardware constraints in radar 

signal processing limited real-time classification, making response 

times slower. The lack of integration with advanced electromagnetic 

(EM) modeling tools also led to inefficient radar system design, 

reducing accuracy and performance. These challenges necessitated 

the exploration of data-driven, adaptive learning approaches to 

enhance UAV detection and classification reliability. 

The rapid increase in unauthorized UAV activities and their potential 

use in surveillance breaches, smuggling, and terrorism have raised 

serious security concerns. In January 2022, two UAVs were 

suspected in an attack on an Indian Air Force base in Jammu, 

highlighting the urgency for advanced UAV detection systems. 

Traditional radar-based detection lacks robust classification accuracy, 

often confusing UAVs with birds or ground clutter. The need for real- 

time, automated UAV classification has driven interest in deep 

learning models, which can learn complex UAV features from radar 

data. The integration of full-wave EM CAD tools enables improved 

radar system design, ensuring optimized signal processing and 

feature extraction. Additionally, the Indian government’s push for 

indigenous defense technologies, under ‘Make in India’, further 

encourages research in UAV detection. AI-driven radar systems have 

the potential to enhance national security, prevent unauthorized UAV 

intrusions, and aid in disaster response efforts, making this research 

both timely and impactful. 

The increasing number of low-cost, highly maneuverable UAVs 

poses challenges to existing airspace security systems. Conventional 

radar-based methods fail to provide accurate classification, leading to 

frequent false positives and missed detections. Advanced UAV 

classification is necessary for military surveillance, border security, 

and counter-terrorism operations. The Indian defense sector is 

actively seeking AI-integrated solutions to enhance radar capabilities, 
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ensuring precise target identification in real-time scenarios. FMCW 

radar technology, coupled with deep learning and EM CAD 

modeling, provides an optimal solution by improving UAV 

classification accuracy, reducing false alarms, and optimizing radar 

designs. This research is essential for developing next-generation 

radar-based UAV detection frameworks, ensuring India’s 

technological edge in security and aerospace advancements. 

2. LITERATURE SURVEY 

Due to the widespread proliferation of Unmanned Aerial Vehicles 

(UAVs) worldwide, they have increasingly been utilized in various 

illicit activities, including but not limited to drug and weapons 

smuggling across borders or into prisons, interference with aircraft 

operations, invasion of privacy, and potential involvement in terrorist 

acts. Consequently, the imperative to accurately identify and classify 

UAVs from other airborne targets is primary for ensuring safety and 

security measures. Therefore, it is essential to detect and classify 

UAVs from a distance [1]. Three primary methods are commonly 

employed for the detection of UAVs: acoustic, optical, and Radio 

Frequency (RF). Acoustic methods, recognized for their ease of 

installation and relatively modest cost, offer the advantage of not 

mandating a Line of Sight (LOS) for UAV detection. Moreover, these 

methods can be effectively coupled with Machine Learning (ML) 

algorithms for classification purposes. However, acoustic techniques 

are limited in their capacity for long-range detection and are notably 

vulnerable to interference from ambient environmental noise [2]. 

Radar-based detection systems, distinct from optical methods, remain 

impervious to adverse weather conditions and operate proficiently 

both day and night. These systems can track autonomous flights, 

concurrently detect and track multiple UAVs, and when integrated 

with ML algorithms, are capable of classifying various targets and 

discerning between different types of UAVs [3]. However, radar- 

based detection systems are considered a high-cost solution 

compared to other detection methodologies, and necessitate LOS for 

UAV detection. summarizes the key distinctions among the four UAV 

detection methods. Notably, radar systems exhibit numerous 

advantages over alternative techniques [4]. 

This undertaking proves to be both resource-intensive and time- 

consuming, constrained by various factors including radar 

parameters, available UAV models, and environmental backgrounds. 

Moreover, the scarcity of accessible radar UAV datasets further 

exacerbates this challenge, with existing datasets often limited in 

scope to specific UAV types and radar configurations employed in 

prior studies [5]. opening up for applications in the field of 

security and enabling highly integrated solutions for accurate level 

measurements and non-destructive testing [6]. In recent years, these 

systems have undergone an impressive development and, in addition 

to large signal bandwidths of several terahertz, also achieved 

measurement rates of a few kilohertz that are comparable to 

integrated millimeter wave radar systems thanks to sophisticated 

system concepts [7]. However, such systems are comparatively 

complex and require femtosecond laser systems as well as a 

sophisticated laser delay unit. In addition to high system costs, this 

implies limited system scalability, especially with regard to multi- 

sensor systems. In contrast, tunable continuous-wave terahertz 

systems based on two-color laser radiation represent a promising, 

cost-efficient alternative [8]. 

Interesting implementations of frequency-modulated photonic 

microwave and terahertz radars are shown in, respectiveley. The latter 

features a modulation of 300 GHz at a center frequency of 600 GHz 

with a continuous bandwidth of 167 GHz and a sweep time of 48 ms, 

offering a much larger bandwidth but a much lower measurement rate 

compared to Si-Ge based monolithic microwave integrated circuits 

(MMIC) radar systems [9]. While the possibility of fast frequency 

modulation based on the photomixing concept has been shown before 

in a spectroscopy setup, the here addressed realization of the radar 

measurement principle is the key for the possible application in the 

field of non-destructive testing [10]. they observe deviations of 

calculated thicknesses and the nominal thicknesses of the samples. 

While a window function can be applied to the data to suppress the 

side lobes, it is shown in that with and without suppression, each 

reflecting surface can affect the main lobes' location, if peak 

detection algorithms are used to locate the sample interfaces [11]. In 

addition to the unprecedented bandwidth of a terahertz FMCW radar 

to the best of our knowledge, the optoelectronic continuous wave 

concept offers a simple possibility to distribute terahertz modulated 

signals by means of optical fibers and thus to address several 

transmitter and receiver units simultaneously, e.g., as an imaging 

radar array [12]. The use of radar systems with comparable 

modulation rates for industrial imaging applications demonstrates the 

great application potential of the new technology in this field [13]. 

Wearable Sensor-Based Gesture Recognition Systems: These 

systems require users to wear data gloves connected to a computer, 

using sensors such as accelerometers and gyroscopes [14], to capture 

rich hand movement information. Liang and others developed a 

gesture recognition system using data gloves to assist people with 

hearing impairments or speech disabilities [15]. Kanokoda et al. [16] 

acquired gesture data through data gloves and used artificial neural 

networks for real-time gesture prediction. In 2017, Andrews et al. 

proposed a gesture recognition method based on data gloves and 

burst detection [17] for clinical emergency communication between 

patients and doctors. However, wearable devices are prone to 

damage, functionally limited, expensive, and require long-term wear, 

which are greatly inconveniences to users. 

3. PROPOSED METHODOLOGY 

Radar Dataset 

The dataset used in this project consists of Frequency-Modulated 

Continuous Wave (FMCW) radar signals. It contains information 

about various detected objects, including vehicles, pedestrians, 

drones, buildings, and animals. Each row represents a signal 

measurement with multiple features extracted from radar echoes. 

These features include time-frequency characteristics, Doppler shifts, 

and signal power levels, which are crucial for distinguishing between 

different targets. The dataset is loaded in a structured format, usually 

as a CSV file, and is the foundation for training and evaluating 

classification models. 

Data Preprocessing 

Before training any machine learning model, the dataset undergoes a 

thorough preprocessing phase. The first step involves checking for 

missing values, which are either filled using statistical imputation 

techniques or removed if necessary. The dataset’s descriptive 

statistics are analyzed to understand its distribution, including mean, 

standard deviation, and frequency counts. Categorical labels, such as 

target names, are encoded into numerical representations using Label 

Encoding to make them suitable for model input. Additionally, 

feature scaling is applied using StandardScaler to normalize the 

numerical values, ensuring all features contribute equally during 

model training. The dataset is then split into training and testing sets 

using an 80-20 split to evaluate model performance effectively. 
Existing KNN Classifier 

The K-Nearest Neighbors (KNN) classifier is implemented as a 

baseline model. KNN is a non-parametric algorithm that classifies a 

new data point based on the majority class of its K nearest neighbors 

in feature space. The classifier is trained on the preprocessed dataset 

using five nearest neighbors. After training, it is tested on unseen 

data, where it assigns class labels to radar signals based on their 

proximity to previously seen samples. Performance is evaluated using 

accuracy, precision, recall, and F1-score metrics. The results provide 

an initial benchmark for comparison with the proposed deep learning 

model. 
Proposed FFNN + Random Forest Classifier 

The proposed approach integrates a Feedforward Neural Network 

(FFNN) with a Random Forest classifier. The FFNN acts as a feature 

extractor by learning complex patterns in radar signals through 
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multiple hidden layers with ReLU activation functions. The final 

hidden layer outputs a high-dimensional feature representation of the 

input data, which is then fed into a Random Forest classifier for final 

prediction. Random Forest is chosen for its robustness and ability to 

handle complex decision boundaries. The FFNN is trained for 

multiple epochs with an Adam optimizer, and once trained, its feature 

representations are used to train the Random Forest model. This 

hybrid approach leverages the deep learning capability of FFNNs and 

the ensemble learning strength of Random Forest to improve 

classification accuracy. 

Performance Comparison Graph 

After training both models, their performance is compared using 

visualization techniques. Metrics such as accuracy, precision, recall, 

and F1-score are plotted to highlight the differences between KNN 

and the proposed FFNN + Random Forest classifier. A bar chart 

represents the comparative scores, while confusion matrices provide 

a detailed view of misclassifications. Additionally, Receiver 

Operating Characteristic (ROC) curves are generated to analyze the 

true positive rate versus the false positive rate for both models. These 

comparisons validate the improvements introduced by the proposed 

hybrid classifier. 

Prediction of Output from Test Data 

The final trained FFNN + Random Forest model is used to classify 

new radar data. Test samples are preprocessed using the same steps as 

the training data, including feature scaling. The FFNN extracts 

features from the test data, which are then classified using the 

Random Forest model. The predicted class labels are mapped back to 

their original target names and displayed. This step demonstrates the 

model’s real-world applicability, allowing it to generalize well on 

unseen radar signals. The results confirm the effectiveness of the 

hybrid approach in accurately classifying FMCW radar targets. 
 

 

Fig.1: Proposed system architectural diagram. 

 

4. EXPERIMENTAL ANALYSIS 

Dataset Description 

The dataset consists of radar signal characteristics and target 

classification details. Each row represents a radar detection instance, 

capturing multiple signal properties essential for target identification. 
1. Frequency (Hz) 

• Represents the operating frequency of the FMCW radar 
system. 

• Measured in Hertz (Hz) and determines the radar's 
resolution and penetration capabilities. 

2. Doppler Shift (Hz) 

• Indicates the frequency shift  due to the relative motion 
between the radar and the target. 

• Measured in Hertz (Hz) and helps determine target 
velocity. 

• Positive values indicate motion toward the radar, while 
negative values indicate motion away from it. 

3. Range (m) 

• Represents the distance between the radar and the detected 
target. 

• Measured in meters (m) and derived from the time delay of 
the reflected signal. 

• Essential for locating targets within the radar’s detection 
zone. 

4. Angle of Arrival (°) 

• Indicates the direction from which the radar receives the 
reflected signal. 

• Measured in degrees (°) and calculated using array 
processing techniques. 

• Helps in determining the azimuth and elevation position of 
the target. 

5. Signal Power (dBm) 

• Represents the strength of the received radar signal. 

• Measured in decibels relative to 1 milliwatt (dBm) and 
indicates target reflectivity. 

• Higher values suggest stronger reflections, which are 
influenced by the target’s material and size. 

6. Noise Level (dB) 

• Measures the background interference affecting the radar 
signal. 

• Expressed in decibels (dB) and impacts signal clarity. 

• A lower noise level improves the detection capability of 
weak targets. 

7. Time of Flight (μs) 

• Represents the duration taken for the radar signal to travel 
to the target and return. 

• Measured in microseconds (μs) and used to calculate range. 

• Longer times indicate distant targets, while shorter times 
suggest closer objects. 

8. Target Class 

• Categorizes detected objects into predefined groups based 
on radar characteristics. 

• Examples include UAVs, birds, ground vehicles, or other 
aerial objects. 

• Used as the output variable in classification models. 

9. Target Name 

• Specifies the actual name or type of the detected object. 

• Provides further granularity beyond the Target Class, 
differentiating between UAV models or vehicle types. 

• Useful for advanced classification tasks where precise 
identification is required. 

Result Description 

The figure 2 illustrates the Graphical User Interface (GUI) designed 

for the project, enabling users to upload the radar dataset and perform 

preliminary analysis. The interface displays key statistical insights 

such as data distribution, missing values, and feature summaries. It 

provides a user-friendly environment for interacting with the dataset 

before proceeding with preprocessing and model training. 
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Fig. 2: Upload of Radar Dataset and Analysis in the GUI Interface 
 

 
Fig. 3: Exploratory Data Analysis (EDA) Plots of the Project 

The figure 3 presents various visualizations used for EDA to 

understand the dataset. It includes histograms, box plots, pair plots, 

and correlation heatmaps to analyze the relationships between 

Frequency, Doppler Shift, Range, Angle of Arrival, Signal Power, 

Noise Level, Time of Flight, and Target Class. These plots help in 

identifying outliers, feature importance, and data distribution 

patterns, which are crucial for feature selection and model 

performance. 
 

Fig. 4: Data Preprocessing in the GUI 
The figure 4 showcases the data preprocessing steps performed 

through the GUI interface. It includes data cleaning, normalization, 

feature scaling, and handling of missing values. The interface ensures 

that raw radar data is transformed into a structured format, making it 

suitable for training the machine learning models. The GUI visually 

represents processed data for validation before feeding it into 

classifiers. 
 

 
Fig. 5: Performance Metrics and Classification Scatter Plot of the K- 

Nearest Neighbors (KNN) Model 

The figure 5 provides a performance evaluation of the K-Nearest 

Neighbors (KNN). It includes accuracy, precision, recall, and F1- 

score values, along with a scatter plot that visualizes predicted vs. 

actual values for regression tasks. The scatter plot helps in analyzing 

the model's generalization ability and its effectiveness in mapping 

radar signals to accurate predictions. 
 

 
Fig. 6: Performance Metrics and Classification Scatter Plot of the 

FFNN + Random Forest, Model 

The figure 6 illustrates the performance comparison of the FFNN + 

Random Forest model. The regression scatter plot shows the 

alignment between predicted and true values, demonstrating the 

impact of DAE-based feature enhancement in improving 

classification and regression accuracy. The model performance is 

evaluated against key statistical metrics, reinforcing its role in 

refining radar signal interpretation. 

 
Fig. 7: Model Prediction on Test Data 

The figure 7 displays the model's predictions on unseen test data. It 

provides a comparison between actual target classifications and 

model-generated predictions, highlighting the effectiveness of the 

trained deep learning model. The figure visually confirms that the 

proposed FFNN + Random Forest classifier accurately detects and 

classifies radar targets with high reliability. 

 

Fig. 8: Performance Comparison Graph of All Models 

The figure 8 presents a comparative analysis of all implemented 

models, including K-Nearest Neighbors (KNN), Feedforward Neural 

Network (FFNN), Random Forest, and. The graph visualizes 

accuracy, precision, recall, and F1-score for each model, 

demonstrating the superiority of FFNN + Random Forest, which 

achieves 100% accuracy across all metrics. This comparison helps in 

validating the efficiency of the proposed approach in radar target 

classification. 

Algorithm Name Accuracy Precision Recall f1- 
score 

KNN Classifier 85.39 85.46 85.57 85.45 

Proposed FFNN + RF 
Classifier 

100.0 100.00 100.00 100.0 

 

Table 1: Summarizing the performance metrics for the two models. 
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5. CONCLUSION 

The project successfully develops a deep learning-based target 

classification system using Frequency-modulated Continuous 

Wave (FMCW) radar data. By leveraging feature-rich radar 

signal parameters, the proposed model enhances the detection 

and classification of targets, particularly focusing on 

Unmanned Aerial Vehicles (UAVs). The integration of 

Feedforward Neural Networks (FFNN) with Random Forest 

(RF) classifiers improves classification accuracy by capturing 

both nonlinear patterns and decision-based heuristics. 

Extensive preprocessing, feature engineering, and model 

optimization contribute to reliable target identification, even in 

noisy environments. The results demonstrate the feasibility of 

AI-driven radar target classification, highlighting its potential 

in defence, surveillance, airspace monitoring, and autonomous 

navigation applications. 
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